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S U M M A R Y  
Given a para-Hermitian matrix, A (Pl, P2, ..., P,), whose elements are real, rational functions of the complex variables 
Pl, P2, ..., P,, it is shown that A(pl ,  P2, ..., P,) can be factorized in the form, 

A (p~, P2 . . . . .  P,) = H t ( - P l ,  -P 2  . . . . .  - p , ) H ( p l ,  Pz . . . . .  P,), 

where the elements of the matrix H (Pl, P2 . . . . .  Pn) are also real rational functions of the specified variables, if and only if 
A (jco~ . . . . .  jo),) is non-negative definite for all real col, i=  1, 2 . . . . .  n. A rather simple computational method for the 
construction of H (p~, P2, ..., P,) is given, and examples are used to illustrate how, in many cases, the factorization can 
actually be carried to completion with little labour. 

1. Introduction 

The complete solution to the single variable matrix factorization problem was given by D. C. 
Youla [1] in 1961, and ever since then, it has found applications in various problems of multi- 
dimensional filtering [2], control systems design [3], multiport network synthesis [-15] and 
sampling and data reconstruction [4]. Alternate solutions to the above problem have also been 
presented by several other authors [5], [6], [7], and, at present, several efficient methods for 
obtaining the factorization in the single variable case exist. Ever since multivariable realiz- 
ability theory was formally introduced in 1960 by H. Ozaki and T. Kasami [8], this has found 
increasing applications in synthesis of multiport lumped-distributed networks as well as in the 
design of microwave cavities and variable parameter networks. Koga's [9] general solution of 
the multiport multivariable synthesis problem requires, at one stage, factorization of a para- 
Hermitian non-negative definite (over the imaginary axis in the complex polydomain or hyper- 
plane) real rational multivariable matrix (i.e. a matrix whose elements are real rational functions 
of several complex variables). The feasibility of factoring this type of multivariable or multi- 
parameter matrix has not yet been demonstrated, in general. Only in some special cases (the 
case, for example, where the prescribed matrix is a polynomial matrix, quadratic in all the 
variables [9] ), a solution to the factorization problem has been shown to exist but no efficient 
techniques for its computation have been advanced. 

In the following section the multivariable matrix factorization problem is clearly stated. In 
section 3, the feasibility of the factorization is demonstrated by proving the existence of a 
solution, and a rather simple, at least in principle, iterative scheme for determining this is shown. 
In section 4, a certain representation for polynomials of several variables is used to actually 
obtain a solution, at least for certain prescribed multivariable matrices. The computational 
simplicity and flexibility in application of the foregoing representation is illustrated by several 
non-trivial examples. In the final section conclusions and recommendations for future research 
are made. 

* The first author is at present a visiting faculty member at the Department of Electrical Engineering, University of 
Maryland, College Park, Maryland 20742, U.S.A. 
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2. Problem statement 

The problem examined in this paper can be stated simply as follows. Let A (Pl, P2 . . . . .  p,) be 
a square matrix whose elements are real, rational functions of the complex variables, Pl, P2 . . . . .  
p,. Let A (Pl, P2 . . . .  , Pn) be para-Hermitia.n, i.e. 

A ( p l ,  P2 . . . .  , P , )= A ' ( - P l ,  - P z ,  .'., --P,) (2.1) 

or for brevity, A(p) = A t ( - p ) ,  where 

A ( p ) = A ( p l ,  p2 . . . . .  p , ) ,  A ( - p ) = A ( - p l , - p e , . . . , - p , )  (2.2) 

and the superscript 't' denotes 'transpose'. Assume tMt  A (Jml, J~ . . . . .  jr, On)= A(jto) is non- 
negative definite for all real sequences {mi}7= 1. Then a matrix H (Pl, P2,--., P,)= H (p), com- 
posed of elements that are real rational functions of pl, P2, -.., P,, is sought such that 

A (pl, P2 . . . .  , p,) = H' ( -  pa, - P2 . . . . .  - p,) H (pl, P2, ..., P,) (2.3) 

or, again, for brevity, 

A (p) = H i ( -  p) H (p). 

3. Existence of  a solution 

The results of this section make use of an extension to a corollary of a certain theorem due to 
E. Artin [10]. Artin's results in this connection are first summarized below in the form of a 
lemma. Henceforth, it will be understood that a real rational function a(p) will represent a 
scalar rational function of Pl, Pz . . . .  , p, with real coefficients. 

Lemma. Let  a(p) be a real-rational function of  p. l f  a(p) >=O for all real p then there,exist real- 
rational functions fi(p), i=  1, 2, ..., such that 

a(p) = Z (f/(P))2, (3.1) 
i 

for all p. 

In (3.1), the sum might not be finite in all cases. However, as pointed out by D. Hilbert [11], 
the sum will definitely be a finite sum at least in certain cases, and these happen to be of practical 
interest in engineering applications. The above lemma is extended to a theorem, which is next, 
stated and proved, as this theorem will be utilized later to demonstrate the existence of a 
solution to the multivariable matrix factorization problem. 

Theorem 1. Let  q (p) be a real-rational function of  p. I f  q Uto) > O,for all real o~, where p = e + jto, 
and ~ real, then there exists a real rational vector x(p)] composed of  real rational functions, 

such that : 

q (p) = x ( - p)3' x (p)] (3.2) 

for all p. 

Proof: The function q(jto) is, by hypothesis, real-rational in to and non-negative for all real to. 
According, then, to the foregoing temma due to E. Artin, there exist real-rational functions 
fi(to) such that 

q (Jto) = Z [f (to)]2 (3.3) 
i 

Let)ie(o)  and f~o(to) denote, respectively, the even and odd parts o f f  (to). Then, 

fie (to) = 1 {fi (to) + f / ( - -  to~} (3.4a) 
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and 
f,o (,,) = k{f, (o) - f , ( - , o ) }  

Clearly, 

f ~ ( o ) = f ~ e ( - o ) ,  and f~o(O)= -f~o(-O) 

On substituting fie + fo  for fi in (3.3), 

= Z [(f,o)2+(f,o)2 +2 Zf ,  ef, o], 
i i 

which in view of (3.5) leads to 

q(-j ,o)  = y, Y,f, of, o]. 
i i 

265 

(3.4b) 

(3.5) 

(3.6) 

(3.7) 

it being implicitly understood that fie and fio are both functions of ~. Now q (j~) is real for 
all real m and is a rational function ofjo~. It follows that q ( jo~)=q(- jm)  and a summation 
by parts of (3.6) and (3.7) yields, 

q (jm) = E [ ( f  ~)2 + (f~o)=] (3.8) 
From (3.3) and (3.5) it is evident that f e and foe are, respectively even and odd in m. Hence, real 
rational functions gie(P) and gio(P) exist such that, 

f e (o) = gie (Jo),  fio (~) = Jg,o (Jo) (3.9) 

Thus, (3.8) can be rewritten in the following form. 

q(Jo) = E [gie(J~)] 2 E [gio(J~)] 2 " (3.10) 
i i 

Moreover, as (3.5) and (3.9) clearly imply that, 

g , e ( - j o )  = g,e( jo) ,  gie(--flO) = --g,o(jO) (3.11) 

an alternate form of (3.10) is 

q (jo) = ~ [gie (Jo) gie ( - -Jo)+ g~o (jo~) gio (--Jo)] (3.12) 
i 

Using the principle of analytic continuation in complex variable theory [12], (3.12) is readily 
extended to the entire complex hyperplane or polydomain. 

q (P) = ~ [g,~ (P) ale ( - -  P) + g,o (P) gio ( -  P)] (3.13) 
i 

Define, x(p)] = [gle(P) glo(P)'"g,~(P) g,o(P)'"]" The vector x (p)] is obviously comprised of 
real-rational functions as elements, and (3.13), when expressed in terms of x(p)] is identical to 
(3.2}. 

It is now possible to establish the existence of a solution H(p) to (2.1) and develop a scheme 
for its calculation. 

Theorem 2. Let A(p) be a real-rational m x m multivariable matrix with normal rank r. Also 
it is given that a ( p ) = A t ( - p )  (i.e. A(p)is para-Hermitian) and A (jo~)>0 (i.e. A (jo)) is n.n.d) 
for all real o. Assume that none of the first r nested principal minors of A (p) is identically zero. 
There exists a positive integer s, s >_>_r and a s x m real, rational matrix H(p) such that 

n ' ( -  p) n (p) = A (p), (3.14) 

for all p, the only assumption being that the summation in the previous theorem consists of a finite 
number of  component terms. Otherwise, the matrix H has an infinite number of rows. 

Proof: The theorem will be proved by means of actual construction of a solution H of (3.14). 
The construction technique is an adaptation of the "Gauss diagonalization" scheme [13], [14], 
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and starts with the working assumption that a solution of (3.14) is of the form given by (3.15), 
where the scalar f~k and the vectors xi] are multivariable real, rational in p. 

[z :'1] A 2 : ' d  f13xd . . . . . .  Amxd  

x23 f23xd . . . . . .  f2mx2] 
t- /(p) = (3 .15)  

. . . . . .  0 x~] . . . . . .  frm x~]_ 

A direct substitution of (3.15) in (3.14) yields the following systems of equations. 

i - 1  

a,k ---- Z fJ ' ( - -P) fJk (p )xy ( - -P) ] ' x j (P) ]  + f~k(p )x~( - -P) ] t x , (P) ] ,  for all k > i ,  (3.16) 
j = 1  

i - i  

ai, = Z f ~ , ( - P ) f J i ( p ) x i ( - P ) ] ' x ~ ( P ) ] + x i ( - P ) ] ' x i ( p ) ] ,  for all i ,  (3.17) 
y = l  

where dig denotes the element in the ith row and kth column of A. Equations represented by 
(3.16) are easily seen to afford a unique solution for each ~k in terms of the elements {a~j} 
of A and the inner products {x~ ( -p)]3  x~(p)] }. An iterative method for the solution of (3.16)is 
possible and computationally advantageous. For i=  1, (3.16) reduces to 

alg = f lk Xl(--p)]t  Xl(--p)]. (3.18) 
Whence, all fak, k=2,  3, ..., m are immediately determined. The factors f2k, k=3,  4 . . . .  , m 
are determined from 

a2k = f12 ( -- P)f,k (P)X~ (-- p)]t X~ (p)] +f2k X=(-- p)]' X2 (p)] (3.19) 

and so forth, until finally f~k, k = r + 1 . . . . .  m, are determined from 
r - 1  

ark -- Z f~r(-- P)fjk (P) X j(--  p)]t xj(p)] +f~kX,(-- p)]' x,(p)] (3.20) 
j = l  

On substituting the above values of {f~k} in (3.17), one can easily arrive at the following set of 
equations for {xi}. 

(p)]  = d, 
( -  p)]' (p)]  = a= /d ,  

x, ( - p ) ] t x ,  (p)] = d , /d ,_ , .  (3.21) 

where dl (p), d z ( p )  . . . .  , dr(p), are the first r nested principal minors of A. In order to prove the 
existence of real, rational solutions x 1] . . . . .  x,] to (3.21)it is noted that A (jo~)> 0, and A (p)= 
A ' ( -  p), implying corresponding properties for each d,; i.e. d~ (p) = d , ( -  p), d~ (jco) > 0, i = 1, 2 . . . . .  
r. Thus dl (j~) > 0, and de (jo~)/d~_ ~ ~jo~) > O, i =- 2, 3 . . . .  , r, for all real co. The existence of solu- 
tions to xl] ,  x2] . . . . .  x,] to (3.21) is therefore guaranteed and the proof of the theorem is 
complete. 

The assumption made in the above theorem that none of the first r nested principal minors 
d l . . . .  , dr of A be identically zero is obviously necessary for (3.16) to yield finite solutions. This 
assumption, however, entails no real loss of generality since any A (p) is congruent to a matrix 
for which the assumption is valid. Specifically, given a real, rational para-Hermitian m x m 
matrix A(p) with normal rank r there exists a real, rational, m x m matrix A~ (p) with normal 
rank r with none of its first r nested principal minors identically zero and such that [15] 

A (p) = QtA 1 (p) Q (3.22) 

for all p, where Q is an m x m constant nonsingular matrix. The properties A ( p ) = A t ( - p ) ,  
A(jo~) >0, for A imply the identical properties for Aa. Thus AI satisfies all requirements of 
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theorem 2, and can be expressed in the form A1 =H~ ( - p ) H  1 (p), which immediately yields a 
factorization for A: 

A = H t ( -  p) H (p), (3.22a) 

where 

H(p) = QH 1 (p). (3.22b) 

To summarize the preceding results, the general procedure for the factorization of A consists 
of five steps. 

(1) Determine the permutation matrix Q and the matrix A1 (p) in (3.22) so that none of the 
first r nested principal minors of Aa is identically zero 

(2) To factor A a (p), first solve (3.21) for xl], x2- ] . . . . .  x~] 
(3) Iteratively ~letermine the scalars {f~k} by using the recurrence relations (3.16) 
(4) Form the matrix Ha(p)as in (3.15) 
(5) The solution H(p)of (3.14)is H(p)=QHI (p). 

4. Use of quadratic form representation to facilitate computation 

In the preceding section it has been noticed that the elements of H (p) are real, rational functions 
in p. In a certain special case, when the elements of A (p) are multivariable real polynomials, 
quadratic in each of the variables, it was proved by T. Koga using a different technique that 
the factored matrix H(p) has as elements multivariable real polynomials which are linear in 
the variables under consideration. Koga's results have been very nicely summarized by D. C. 
Youla [16]. It is, however, seen that even in this special case a considerable amount of com- 
putational effort is required to get H(p). Here, an approach to obtain the matrix H(p) from 
a wider class of multivariable, real, rati0nal'matrices than those covered by Koga, will be 
discussed. The basis of this approach is the modified form of a certain representation referred 
to as the quadratic form representation of polynomials of several variables [17]. The relevant 
representation is summarized below in the form of an assertion. 

Assertion 1. A real polynomial of several variables, 

m l  m2 m n  

q(P) = • ~ ' ' "  E Cktk . . . .  k,p]lp~ 2 ...p~", (4.1) 
k l = 0  k 2 = 0  k n = O  

where 

0<= ~ ki<= ~ mi 
i = 1  i = 1  

has associated with it a real, symmetric constant matrix B such that, 

q(p) = y(p)]t By(p)],  (4.2) 

where y(p)]t is a row matrix having as elements, functions, which are products of powers of 
Pl,  P2 . . . .  , P,. 

The second assertion which is a modified form of the first assertion quoted from [17] is the one 
that is relevant in this content. As the second assertion is readily derivable from the first, no 
proofs are given, but illustrative examples to be included further clarify this point. 

Assertion 2. The real polynomial, q(p) of several variables in (4.1) has associated with it a real 
symmetric constant matrix C such that, 

q(P) = Y(-P)]t Cy(p)] (4.3) 

(4.3) will be referred to as the modified version of the quadratic form representation. 
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It is readily appreciated that in the row matrix y]~ and the constant matrix C are not unique 
for a given q(p). It will, further, be seen that for a fixed y, the constant symmetric matrix C can 
be non-unique. Sometimes, the flexibility in the construction of matrix C can be used to 
advantage. In (4.3) if C is non-negative definite (n.n.d), then it can be written in the standard 
form 

C = D'D (4.4) 

where D is another real constant matrix. Then substituting (4.4) in (4.3) 

q(p) = [ V y ( - p ) ] ] '  JOy(p)] ] 
= Z h~ (p) h~(- p), (4.5) 

where the hi(p)'s are multivariable real polynomials. If C is not non-negative definite, the non- 
uniqueness of the representation for q(p) can be sometimes used to advantage as the following 
example will illustrate. A single variable polynomial can be chosen to serve this purpose 
equally well. 

Example. Consider the single variable even polynomial, q(p~)= -Pt6-p14+4p~+6,  where 
q(jcoi) >0, for all real ~olq(pl) can be written in the form, 

q(Pi) = Yt(-Px)] By(Pl)] 

= [ -  p ~ , -  pi ,  1] - 4 . (4.6) 

Certainly B is not n.n.d, in (4.6). The trouble causing term is the coefficient of p2. However, 
by changing y(pl)] ,  it is seen that, 

q(Pl) = [ -p3 ,p2 , -p i ,  1] 

3 0 

(4.7) 

In this case the dimension of the y] vector has been increased to obtain an associated non- 
negative definite square matrix in the modified quadratic form representation of q(Pl). (4.7) 
along with (4.4) can then be used to factor q (p~) in the desired form (4.5). 

It is appreciated that it is not always necessary to increase the dimension of y] in order to 
obtain an associated matrix, which is n.n.d. This statement is justified by the next example. 

Example. Consider the two-variable quadratic form, 

q (Pl, P2) = 2P14 _ 2p 31 P2 -- 0"5p12 P22 + 2p~ p l + 2p~ 
= Y(--Pl, --P2)] t By(P1, P2}J (4.8) 

In (4.8), if Y(-Pl ,  -P2) ] '  = [P~, PIP2, p2], then 

B = -0 .5  . (4.9) 

1 

Obviously tiffs particular B is not n.n.d. By careful inspection, an alternate representation 
involving a different matrix Bt can be obtained without increasing the dimension of y] such 
that B1 is non-negative definite (n.n.d.): 

/ ~ 1  = - 1 1 . 5  . ( 4 . 1 0 )  

- 1  1 
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In (4.10), B 1 is n.n.d, and is such that 

q (Pl, P2)= Y(-Pa, -P2)1tBly(Pl, Pz)] (4.11) 

(4.11) can again be reduced to a form similar to (4.5), using the routine procedure to factorize 
n.n.d., Bl, as B 1 = C] C 1 . 

The iterative scheme discussed in section 3 involves successive factorization of suitable 
rational functions as covered by theorem 1. In the preceding discussion, the modified form of the 
quadratic form representation has been used to factor, even, real, n.n.d, polynomials. However, 
this is no restriction as real, rational functions can also be similarly handled. For example if, 
q(P)=qa (P)/q2 (P) is a real rational function, where q, (p) and qz(P) are real multivariable 
polynomials, such that q (jr0) > 0, and q (p) = q ( -  p) then after rewriting q (p) as 

q x (P) q2 ( -  P) h l (p) (4.12) 
q ( P ) -  q2 (P) q2 (-- P) -- h2(p) 

it is seen that the denominator h 2 (p) is already in the desired form, while the numerator poly- 
nomial, h 1 (p), is such that 

h i (p)=  h l ( - p )  and h 1 (rio) > 0 ,  for all real oJ. (4.13) 

The properties in (4.13) follow from the prescribed properties of q (p), ql (P) and q2 (P) in (4.12), 
as can be verified. Consequently the real multivariable polynomial, hi (p) has to be factored in 
the form (4.5), and attempt may be made to do this, again, using the modified quadratic form 
representation. The next example illustrates the implementation of the construction scheme, 
discussed in the proof for theorem 2, on a prescribed 2 x 2 para-Hermitian matrix. 

Example. Consider the matrix of two variables, 

FI--p2 2 P3 --P2~ 
A(pz'P3) = [_-(Pa-P2) l _ p 2  [ .  (4.14) 

Clearly A (Pc, P3) is para-Hermitian, and A (jOE, JO33)>0, for all real values of 692 and o33. 
Using (3.21) and the modified version of the quadratic form representation, wherever possible, 
to facilitate computation, it can be shown that the factored matrix H(pz, P3) is, 

P3--P2 (1-p t l+p  / .  
H(p"P2) = p2p3-11 

o j 

It can be verified that, 

A (Pl, P2) = Ht(-P~, - P 2 ) H ( p a  P2). 

(4.15) 

5. Conclusions 

In this paper, one of Artin's classical results has been extended. The valid proof for this ex- 
tension has been given. Then, the foregoing extension of Artin's result has been used to demon- 
strate the existence of a solution to the multivariable matrix factorization problem. An iterative 
scheme for the actual construction of the solution has been presented. 

Koga [91 and Youla [161 have shown that for a real multivariable scalar polynomial, 
g (p), which is at most quadratic in each of the variables, it is possible to exhibit an admissible 
Hermitian non-negative definite matrix B such that 

g(p) = y(-p)]'By(p)] (5.1) 

where y(p)] is a vector consisting of as elements only linear real polynomials of the variables. 

Journal of Engineerin9 Math., Vol. 7 (1973) 263-271 



270 N.  K.  Bose, M.  G. Strintzis 

From here on, using the standard technique the n.n.d, matrix B can be factored in the form 
B = D ~ D  and the factorization for g(p) completed. No such scheme is known to be valid for 
multivariable polynomials g (p) which are of degree greater than two in one or more of the 
variables. A modified form of the quadratic form representation of polynomials of several 
variables has been used to actually obtain the factorization in many of these cases, rather simply. 
The non-uniqueness of the quadratic form representation can be used to advantage, as the 
illustrative examples given substantiate. This approach can also be used in the factorization 
of real rational multivariable functions, and as according to the iterative scheme in section 3 
the matrix factorization problem reduces to factorizing successively specified rational functions 
satisfying known properties, the modified version of the quadratic form representation for 
polynomials of several variables is naturally adaptable to the obtaining of the solution in a 
matrix factorization problem. The disadvantage of the fact that the modified version of the 
quadratic form representation cannot be used to factorize any arbitrary even non-negat ive 
definite (on the imaginary axis in the complex polydomain) real multivariable polynomial is, 
therefore, offset by the ease with which it can be implemented and the wide scope for its ap- 
plication. 

Though the existence of a solution to the multivariable matrix factorization problem has 
been demonstrated by actually presenting a scheme for constructing the factor matrix, and a 
practical workable approach given for actually obtaining the factor matrix in many cases, 
some other problems remain to be solved. For example, in the single variable ease, uniqueness 
of solution has been demonstrated by imposing additional constraints on the solution. In the 
multivariable problem, it would be desirable to investigate the condition, if any, that would 
"almost guarantee" H ( p l ,  Pz, ..., P,) in (2.3) (and, may be, its inverse as well) to be analytic in 
the open polydomain Re p~ > 0, for i=  1, 2 . . . .  , n. This is especially difficult, in view of the 
fact, that unlike in the single variable case, there are real multivariable rational functions g (P), 
satisfying g(p)= g ( - p )  and g (jo) >0  for all real o, which appear to be non-factorizable in the 
form, 

g (p) = h ( - p)]' h (p)] (5.2) 

with the constraint that the elements ofh (p)] be not only real rational but also have denominator 
polynomials which are Hurwitz in the multivariable sense [18]. An example which tends to 
substantiate this fact is 

g(Pl ,  P2)= (1 -p iP2)  -2 . (5.3) 

The existence of h (p)] in (5.2) being assured, it would also be desirable to investigate the 
possibility of deriving a simple algorithm that will enable one to actually obtain h (p), given an 
arbitrary g (P) satisfying 

g(P)= g ( - P )  and g(jco) >=0 for all real ~o. (5.4) 
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